首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1146篇
  免费   33篇
  国内免费   8篇
测绘学   16篇
大气科学   121篇
地球物理   234篇
地质学   416篇
海洋学   87篇
天文学   202篇
综合类   3篇
自然地理   108篇
  2021年   10篇
  2020年   12篇
  2019年   10篇
  2018年   15篇
  2017年   24篇
  2016年   19篇
  2015年   19篇
  2014年   28篇
  2013年   60篇
  2012年   25篇
  2011年   47篇
  2010年   35篇
  2009年   64篇
  2008年   34篇
  2007年   28篇
  2006年   44篇
  2005年   33篇
  2004年   49篇
  2003年   48篇
  2002年   33篇
  2001年   30篇
  2000年   27篇
  1999年   34篇
  1998年   29篇
  1997年   18篇
  1996年   19篇
  1995年   21篇
  1994年   18篇
  1993年   18篇
  1992年   18篇
  1991年   14篇
  1990年   14篇
  1989年   12篇
  1988年   12篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   24篇
  1983年   14篇
  1982年   15篇
  1981年   23篇
  1980年   14篇
  1979年   15篇
  1978年   18篇
  1977年   13篇
  1976年   12篇
  1975年   19篇
  1974年   12篇
  1973年   10篇
  1972年   11篇
排序方式: 共有1187条查询结果,搜索用时 421 毫秒
41.
Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better understanding of the full climate system. Acknowledging the importance of land surface change as a component of climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to environmental change and variability.  相似文献   
42.
43.
We measured the partial pressure of oxygen (PO2) in the interstitial gas surrounding the sand-swimming Namib moleEremitalpa granti namibensis. At a sand temperature of 26 °C, which produced a nearly maximal rate of oxygen consumption, thePO2near the noses of the animals averaged only 0·9 kPa (6·7 Torr) below the level in the free atmosphere. High oxygen availability was a result of the notably low metabolic rate in the 20 g mammals and the dry, porous and metabolically inactive nature of dune sand. A mathematical model indicated that normal mammals weighing 200 g or more could comfortably exist completely encased in dune sand. We concluded that the moles' small size and low metabolic rate are not adaptations to hypoxia or hypercapnia underground but are probably related to low food availability and the energetic cost of foraging in their desert environment.  相似文献   
44.
This study investigates the retention of heavy metals in secondary precipitates from a sulfidic mine rock dump and underlying podzolic soils by means of mineralogical and chemical extraction methods. The rock dump, which is at least 50 years old, consists of a 5–10-cm-thick leached zone and an underlying 110–115-cm-thick accumulation zone. Optical microscopy and electron microprobe analyses confirm that pyrrhotite weathering has proceeded much further in the leached horizon relative to the accumulation horizon. The weathering of sulfides in the leached zone has resulted in the migration of most heavy metals to the accumulation zone or underlying soils, where they are retained in more stable phases such as secondary ferric minerals, including goethite and jarosite. Some metals are temporarily retained in hydrated ferrous sulfates (e.g., melanterite, rozenite). Received: 28 October 1996 · Accepted: 24 February 1997  相似文献   
45.
Theoretical results show that the amplitude of a borehole source is reduced when the well in which it is operated is cased and cemented. This reduction is a strong function of the formation velocity and is more weakly dependent on the direction of propagation of the wave travelling from source to receiver and on the diameter of the borehole itself. We have tested these predictions with data gathered in a cross-hole seismic experiment conducted in two stages in 1990 and 1991. The source and receivers were located in the MIT/Stech 1-21A and MIT/Burch 1-20B wells at the Earth Resources Laboratory (ERL) test site in Michigan (USA). Though the source well (MIT/Stech 1-21A) was uncased in 1990, a steel casing and cement were added prior to the collection of data in 1991. Several receiver positions were reoccupied to compare data collected with the source in open and cased holes. Using a velocity model for this area and borehole diameter measurements from a calliper log, a compensation factor can be computed that will adjust the data collected in 1991 to have amplitudes comparable to that collected in the first stage of the experiment. The accuracy of the results demonstrates the validity of the theory, which can be very useful in better understanding seismic waveforms recorded in cross-hole experiments.  相似文献   
46.
Rate constants for the gas-phase reactions of OH radicals, NO3 radicals and O3 with the C7-carbonyl compounds 4-methylenehex-5-enal [CH2=CHC(=CH2)CH2CH2CHO], (3Z)- and (3E)-4-methylhexa-3,5-dienal [CH2=CHC(CH3)=CHCH2CHO] and 4-methylcyclohex-3-en-1-one, which are products of the atmospheric degradations of myrcene, Z- and E-ocimene and terpinolene, respectively, have been measured at 296 ± 2 K and atmospheric pressure of air using relative rate methods. The rate constants obtained (in cm3 molecule–1 s–1 units) were: for 4-methylenehex-5-enal, (1.55 ± 0.15) × 10–10, (4.75 ± 0.35) × 10–13 and (1.46 ± 0.12) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3Z)-4-methylhexa-3,5-dienal: (1.61 ± 0.35) × 10–10, (2.17 ± 0.30) × 10–12, and (4.13 ± 0.81) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; for (3E)-4-methylhexa-3,5-dienal: (2.52 ± 0.65) × 10–10, (1.75 ± 0.27) × 10–12, and (5.36 ± 0.28) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively; and for 4-methylcyclohex-3-en-1-one: (1.10 ± 0.19) × 10–10, (1.81 ± 0.35) × 10–12, and (6.98 ± 0.40) × 10–17 for the OH radical, NO3 radical and O3 reactions, respectively. These carbonyl compounds are all reactive in the troposphere, with daytime reaction with the OH radical and nighttime reaction with the NO3 radical being predicted to dominate as loss processes and with estimated lifetimes of about an hour or less.  相似文献   
47.
Understanding our star, the Sun, is of fundamental interest for life on Earth. In this paper, the status of knowledge in solar physics of roughly two decades ago is summarised, and the most recent developments in this very active field are shown, many of them achieved by means of space based missions. The Sun–Earth connection is described and, finally, an outlook on future solar research is given.  相似文献   
48.
The abundance of metallic iron is highly variable in different kinds of chondrites. The precise mechanism by which metal fractionation occurred and its place in time relative to chondrule formation are unknown. As metallic iron is abundant in most Type I (FeO-poor) chondrules, determining under what conditions metal could form in chondrules is of great interest. Assuming chondrules were formed from low temperature nebular condensate, we heated an anhydrous CI-like material at 1580°C in conditions similar to those of the canonical nebula (PH2 = 1.3 × 10−5 atm). We reproduced many of the characteristics of Type IA and IIA chondrules but none of them contained any iron metal. In these experiments FeO was abundant in charges that were heated for as long as 6 h. At a lower temperature, 1350°C, dendritic/cellular metal crystallized from Fe-FeS melts during the evaporation of S. However, the silicate portion consisted of many relict grains and vesicles, not typical of chondrules.Evaporation experiments conducted at PH2 = 1 atm and 1565°C produced charges containing metallic iron both as melt droplets and inclusions in olivine, similar to those found in chondrules. Formation of iron in these experiments was primarily the result of desulfurization of FeS. With long heating times Fe° was lost by evaporation. Apart from some reduction of FeO by kerogen to make metal inclusions within olivine grains, reduction of FeO to make Fe° in these charges was not observed.This study shows that under canonical nebular conditions FeS and iron-metal are extremely volatile so that metal-rich Type I chondrules could not form by melting “CI.” Under these conditions FeO is lost predominantly by hydrogen stripping and, due to the relative low abundance of hydrogen at low pressures, remains in the melt for as long as 6 h. Conversely, at higher total pressures (1-atm H2) iron metal (produced mainly by the desulfurization of troilite) is less volatile and remains in the melt for longer times (at least 6 h). In addition, due to elevated pressures of hydrogen, FeO is stripped away much faster. These results suggest that chondrule formation occurred in environments with elevated pressures relative to the canonical nebula for iron metal to be present.  相似文献   
49.
50.
Roger H. Mitchell   《Lithos》2004,77(1-4):xi-xiv
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号